DCMT0702 carbide inserts are a specific type of indexable carbide insert with the standard ISO designation of DCMT070204. These inserts are commonly used in turning operations and are known for their versatility and cutting efficiency.
The dimensions of DCMT0702 carbide inserts are defined by the ISO 1832 standard. The "DCMT" refers to the shape of the insert, which is a 55° diamond shape. The numbers "0702" indicate the size and geometry of the insert, with specific dimensions for the length, width, and thickness of the insert.
The surface quality of DCMT0702 carbide inserts is crucial for their cutting performance. These inserts undergo precision grinding and polishing processes to achieve a smooth and precise cutting edge. The surface finish is carefully controlled to minimize friction, improve chip evacuation, and reduce tool wear during turning operations.
The manufacturing process of DCMT0702 carbide inserts involves several steps. It starts with the selection of high-quality carbide materials, which are then shaped and formed into the desired insert form. The cutting edge geometry is precisely ground and formed to provide optimal cutting performance. The inserts are then securely mounted onto tool holders using specialized clamping or brazing techniques.
The advantages of DCMT0702 carbide inserts lie in their versatility and cutting efficiency. These inserts are suitable for various turning operations, including roughing, finishing, and profiling. They offer excellent chip control, efficient material removal, and extended tool life. DCMT0702 carbide inserts can handle a wide range of materials, including steels, stainless steels, cast iron, and non-ferrous metals.
DCMT0702 carbide inserts find applications in various industries, including automotive, aerospace, and general machining. They are commonly used in CNC lathes and turning centers. These inserts are particularly effective for high-speed machining, offering improved productivity and surface finish. DCMT0702 carbide inserts are widely utilized for turning applications, such as external and internal turning, facing, and threading. They contribute to increased efficiency, reduced tool changeovers, and high-quality finished products in turning operations.